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A B S T R A C T   

Background: Nicotine and illicit stimulants are very addictive substances. Although associations between grey 
matter and dependence on stimulants have been frequently reported, white matter correlates have received less 
attention. 
Methods: Eleven international sites ascribed to the ENIGMA-Addiction consortium contributed data from in
dividuals with dependence on cocaine (n = 147), methamphetamine (n = 132) and nicotine (n = 189), as well as 
non-dependent controls (n = 333). We compared the fractional anisotropy (FA), axial diffusivity (AD), radial 
diffusivity (RD) and mean diffusivity (MD) of 20 bilateral tracts. Also, we compared the performance of various 
machine learning algorithms in deriving brain-based classifications on stimulant dependence. 
Results: The cocaine and methamphetamine groups had lower regional FA and higher RD in several association, 
commissural, and projection white matter tracts. The methamphetamine dependent group additionally showed 
lower regional AD. The nicotine group had lower FA and higher RD limited to the anterior limb of the internal 
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capsule. The best performing machine learning algorithm was the support vector machine (SVM). The SVM 
successfully classified individuals with dependence on cocaine (AUC = 0.70, p < 0.001) and methamphetamine 
(AUC = 0.71, p < 0.001) relative to non-dependent controls. Classifications related to nicotine dependence 
proved modest (AUC = 0.62, p = 0.014). 
Conclusions: Stimulant dependence was related to FA disturbances within tracts consistent with a role in 
addiction. The multivariate pattern of white matter differences proved sufficient to identify individuals with 
stimulant dependence, particularly for cocaine and methamphetamine.   

1. Introduction 

Substance abuse has negative consequences for health and entails a 
heavy economic and societal burden (Degenhardt et al., 2018). Despite 
worldwide efforts in reducing its consumption, nicotine remains one of 
the most used legal drugs and is the leading cause of preventable and 
premature death due to smoking-related conditions such as cancer, 
respiratory, and cardiovascular illnesses (West, 2017). While less com
mon, the use of illicit stimulants is on the rise (Center for Behavioral 
Health Statistics and Quality, 2018). Cocaine and methamphetamine are 
both very addictive and neurotoxic substances (Gonçalves et al., 2014). 
Whilst grey matter alterations relative to nicotine (Fritz et al., 2014; 
Hanlon et al., 2016; Kaag et al., 2018; Kuhn et al., 2010; Mackey et al., 
2019; Wetherill et al., 2013) and illicit stimulants have been widely 
studied (Hall et al., 2015; Mackey et al., 2019; Mackey and Paulus, 2013; 
Yang et al., 2020), differences in white matter have received less 
attention. 

Diffusion-tensor imaging (DTI) has been broadly used to assess white 
matter composition (Basser et al., 1994), and assumes that water 
diffusion within tissue is anisotropic, or highly coherent, due to the 
physical boundaries myelin sheaths impose (Basser et al., 1994). Frac
tional anisotropy (FA) considers the ratio of parallel to perpendicular 
diffusion. Values closer to 1 suggest greater anisotropy such that water is 
diffused in parallel to the tract’s predominant direction. Tracts can be 
ordered based on such direction as commissural (left-right, and vice 
versa), projection (top-down), or associative tracts (anterior-posterior) 
(Mori et al., 2008). While FA is very sensitive to microstructural dif
ferences it does not illuminate the exact source. Hence, incorporating 
other metrics may help in understanding the nature of white matter 
disruptions. For example, parallel or axial diffusivity (AD) is sensitive to 
axonal injury, perpendicular or radial diffusivity (RD) reflects myelin 
density. The average of AD and RD, mean diffusivity (MD), reveals the 
amount of diffused water irrespective of direction and may hint at 
edema or swelling (Alexander et al., 2007). 

Findings on DTI for nicotine dependence are controversial as studies 
have shown both higher and lower FA among tobacco smokers (Huang 
et al., 2020; Van Ewijk et al., 2015; Wang et al., 2017; Yu et al., 2016; 
Zhang et al., 2010, 2013). It has been proposed that higher FA might be 
related to the age of onset of smoking and be transient (Gogliettino et al., 
2016; Kochunov et al., 2013). Findings in cocaine and methamphet
amine are less ambiguous since both have been related to lower FA 
(Huang et al., 2020; Lederer et al., 2016; Suchting et al., 2020). Still, 
most of the studies on illicit stimulants are likely underpowered and 
focus on a priori selected tracts to avoid multiple comparisons issues. In 
the current work, authors joined the ENIGMA-Addiction consortium’s 
data pooling initiative (https://www.ENIGMAaddiction.com) that pro
vides larger sample sizes to both replicate and extend findings from the 
literature. Additionally, we tested a variety of machine learning algo
rithms to assess whether DTI-derived metrics can discriminate substance 
dependent individuals from controls. Machine learning implementation 
in substance dependence research has received increased attention in 
recent years (Barenholtz et al., 2020; Mak et al., 2019). However, the 
few studies that have tested brain-based classifications for stimulant 
dependence focused on other MRI modalities (Li et al., 2019; Mackey 
et al., 2019; Mete et al., 2016; Wetherill et al., 2019). Unlike conven
tional mass-univariate approaches, multivariate-based classification 

methods may detect interactions and non-linear relations that would 
otherwise pass unnoticed. 

2. Materials and methods 

2.1. Participants 

Eleven sites from the ENIGMA-Addiction consortium contributed 14 
studies with 808 participants for this project, including non-dependent 
controls (n = 333) and individuals with dependence on cocaine (n =
154), methamphetamine (n = 132), and nicotine (n = 189). A variety of 
tools served to diagnose substance dependence (see Table ST1 in the 
Supplementary materials). Participants were grouped according to their 
primary substance of choice and required to not meet any other axis-I 
psychiatric diagnoses, neurological diseases, or additional de
pendencies besides nicotine (see Table 1). Long-term abstinent in
dividuals (> 365 days) were excluded (n = 7, all from the cocaine group; 
n = 147) to avoid confounding effects of recovery. This work was carried 
out under the code of ethics of the World Medical Association (Decla
ration of Helsinki). All sites obtained local ethical review and informed 
consent from all participants. 

2.2. Diffusion MRI acquisition and processing 

Scanner and protocol details can be found in ST1. Eddy currents and 
b0 distortions were removed at each site accordingly with the ENIGMA 
DTI protocols (http://enigma.ini.usc.edu/protocols/dti-protocols/). 
After tensor fitting, scalar maps were eroded, registered, and projected 
to the ENIGMA’s template and skeleton (Jahanshad et al., 2013) as part 
of the Tract-based Spatial Statistics (TBSS) pipeline. Registration, vec
tors’ orientation, and projection distances to the skeleton were locally 
inspected. Following ENIGMA-DTI protocols, the average diffusivity 
metrics (i.e., FA, AD, RD, and MD) were derived from 43 tracts (i.e., 5 
bilateral and 38 lateralized) in accordance with the ICBM-DTI-81 atlas 
(Mori et al., 2008). The corpus callosum, the internal capsule, and the 
corona radiata were removed in favor of their divisions (e.g., body, 
genu, and splenium of the corpus callosum). The inferior fronto-occipital 
fasciculus was excluded because of well-known issues in the ENIGMA 
DTI protocol with this tract (see ENIGMA-DTI protocol link for more 
details), i.e., one bilateral and three lateralized tracts were excluded (n 
= 7). Lateralized tracts (n = 32) were bilaterally averaged (n = 16) 
generating a total of 20 tracts to examine. Scanner influence was 
adjusted with ComBat while preserving group, age, age2, and sex effects. 
ComBat uses an empirical Bayes framework to improve the variance of 
the parameter estimates and has proven robust in settings where the 
biological covariate of interest (e.g., group) is not well-balanced across 

Table 1 
Age and sex distribution of each group (mean, SD).   

N Age Range Females 

Control group  333 30.7 (9.76) 18 – 55  141 
Cocaine dependent group  147 39.8 (9.14) 19 – 58  22 
Subset co-dependent on nicotine  109 39.0 (9.22) 19 – 58  16 
Methamphetamine dependent group  132 30.9 (7.67) 18 – 54  46 
Subset co-dependent on nicotine  115 31.2 (7.77) 18 – 54  35 
Nicotine dependent group  189 29.0 (9.94) 18 – 54  81  
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sites (Fortin et al., 2017). This approach has been recently used in 
various work from the ENIGMA consortium (Favre et al., 2019; Hatton 
et al., 2020; Villalón-Reina et al., 2020). 

2.3. Statistical analyses 

2.3.1. Univariate group comparisons 
Linear regression models included the mean FA of each tract as the 

dependent variable. The main predictor, group, was a 4-level factor 
variable where non-dependent controls were the reference group. Age, 
age2, and sex were entered as covariates to account for linear and non- 
linear effects (Kochunov et al., 2012). All statistical analyses were per
formed using R version 4.1.0 (R Core Team, 2018). Assumptions of 
normality and homoscedasticity of residuals were examined for each 
model with Shapiro’s and Levene’s tests. Robust models were conducted 
if any of these assumptions were violated with the robustbase package 
(Maechler et al., 2021). The residuals of the FA of the posterior corona 
radiata and the splenium of the corpus callosum, and the residuals of the 
MD of the uncinate fasciculus were further tested with robust re
gressions as they violated the homoscedasticity assumption. Effect sizes 
were calculated using the effectsize package (Ben-Shachar et al., 2020). 
Results were plotted with the ggseg3d package (Mowinckel and Vidal-
Piñeiro, 2019). All the resulting p-values from each test (i.e., three 
predefined contrasts [cocaine, methamphetamine, and nicotine vs 
non-dependent controls] for 20 tracts totaling 60 tests) were further 
corrected with a False Discovery Rate (FDR) adjustment (Benjamini and 
Hochberg, 1995). Significance level was set as p-corrected (q) < 0.05. 
Separate post-hoc tests were conducted on AD, RD, and MD on tracts 
where groups differed for FA. These p-values did not include further 
adjustments as they were deemed in-depth analyses to explore the un
derlying sources of differences in FA. 

Additional comparisons were performed on tracts where the illicit 
stimulant dependent groups differed from non-dependent controls. 
Concretely, a subsample of individuals with dependence on cocaine (n 
= 108) and methamphetamine (n = 115) and co-dependence on nicotine 
was compared with the nicotine group to test if differences with controls 
were influenced by comorbid nicotine dependence. Furthermore, we 
repeated the main analysis with the lateralized version of all tracts to 
test for laterality effects (n = 36; all FDR-corrected). 

2.3.2. Multivariate machine learning classifiers 
Base out-of-sample performance was calculated for each classifica

tion task according to a 5-fold cross-validation (CV) scheme, where the 
ratio of case to control was matched between all training and validation 
sets. The main classifier examined was a support vector machine (SVM) 
with radial basis kernel function-based pipeline and a front-end robust 
scaler, where each feature, i.e., the site-adjusted FA, RD, AD and MD 
values of 20 tracts, was standardized by first removing the median and 
next scaled according to the 5th and 95th percentiles of its distribution 
(Amari and Wu, 1999). Age, age2, and sex were residualized to prevent 
estimations based on non-brain data (Schwarz et al., 2019). 
Hyper-parameters for the SVM, the strength of regularization as well as 
the kernel coefficient, were selected by a random hyper-parameter 
search. Sixty combinations were tested with a nested 3-fold CV. The 
best performing combination was used to train the final evaluated SVM 
following the 5-fold CV. Moreover, other machine learning pipelines (i. 
e., regularized logistic regressions, light gradient boosting, random 
forest, and AutoGluon AutoML) were compared to the SVM to validate 
its choice. More details are available in the supplementary materials 
(SM7). The average area under the receiving operating curve (AUC) of 
each machine learning algorithm, representing its performance, is re
ported. Feature importance of each SVM estimation was computed 
based on the greatest change in cost function after removing individual 
features (Guyon et al., 2002). Machine learning algorithms were 
implemented and evaluated with the python-based brain predictability 
toolbox (Hahn et al., 2021). 

Permutation tests (Golland and Fischl, 2003; Noirhomme et al., 
2014) were done to establish the statistical significance of each 
cross-validated classification (i.e., a certain classification was 
re-evaluated after labels were randomly permuted). The significance 
was calculated by comparing the average k-fold performance from the 
real dataset relative to the average k-fold performance from the 
randomly permuted dataset (i.e., the rank of the real average score 
within the sorted null distribution scores is calculated and converted to a 
p-value). Due to the unbalanced structure unique to this multi-site 
dataset, permutations were constrained to participants from the same 
imaging site because of concerns about case or control-only sites (Dinga 
et al., 2020). 

3. Results 

Relative to non-dependent controls, the cocaine dependent group 
had lower FA in the posterior thalamic radiation (t794 = − 2.91, q =
0.025, d = − 0.21 [− 0.35, − 0.07]), the retrolenticular part of the in
ternal capsule (t794 = − 3.59, q = 0.006, d = − 0.26 [− 0.40, − 0.12]), and 
the sagittal stratum (t794 = − 3.12, q = 0.019, d = − 0.22 [− 0.36, 
− 0.08]) (see Fig. 1). Post-hoc contrasts revealed that individuals with 
cocaine dependence had higher RD in the retrolenticular part of the 
internal capsule (t475 = 3.16, p = 0.002, d = 0.29 [0.11, 0.47]) and the 
sagittal stratum (t475 = 2.12, p = 0.035, d = 0.20 [0.01, 0.38]), and 
higher MD in the retrolenticular part of the internal capsule (t475 = 2.83, 
p = 0.005, d = 0.26 [0.08, 0.44]), and the sagittal stratum (t475 = 3.13, 
p = 0.002, d = 0.29 [0.11, 0.47]). A summary of the results is available 
in the Supplementary materials (see ST2). 

The methamphetamine dependent group had lower FA in the 
cingulum (t794 = − 3.95, q = 0.001, d = − 0.28 [− 0.42, − 0.14]) and its 
hippocampal part (t794 = − 3.92, q = 0.001, d = − 0.28 [− 0.42, − 0.14]), 
the genu (t794 = − 3.60, q = 0.002, d = − 0.26 [− 0.40, − 0.12]) and 
splenium of the corpus callosum (t794 = − 2.93, q = 0.014, d = − 0.21 
[− 0.35, − 0.07]; robust linear regression results: t794 = − 3.16, 
p = 0.001, d = − 0.22 [− 0.36, − 0.09]), the posterior thalamic radiation 
(t794 = − 2.36, q = 0.046, d = − 0.17 [− 0.31, − 0.03]), the superior 
fronto-occipital fasciculus (t794 = − 2.39, q = 0.046, d = − 0.17 [− 0.31, 
− 0.03]), the superior longitudinal fasciculus (t794 = − 3.11, q = 0.010, 
d = − 0.22 [− 0.36, − 0.08]), and the sagittal stratum (t794 = − 2.48, q =
0.044, d = − 0.18 [− 0.32, − 0.04]) when compared to non-dependent 
controls (see Fig. 2). Post-hoc tests shown that the methamphetamine 
dependent group had lower AD along the cingulum (t460 = − 4.08, 
p < 0.001, d = − 0.38 [− 0.56, − 0.20]), the genu of the corpus callosum 
(t460 = − 2.33, p = 0.020, d = − 0.22 [− 0.40, − 0.03]), and the superior 
longitudinal fasciculus (t460 = − 3.37, p < 0.001, d = − 0.31 [− 0.50, 
− 0.13]). Individuals from this group showed higher RD in the cingulum 
(t460 = 2.42, p = 0.016, d = 0.23 [0.04, 0.41]), its hippocampal part 
(t460 = 4.25, p < 0.001, d = 0.40 [0.21, 0.58]), and the genu (t460 =

2.35, p = 0.020, d = 0.22 [0.04, 0.40]) and splenium of the corpus 
callosum (t460 = 2.17, p = 0.027, d = 0.21 [0.02, 0.39]). Also, this group 
showed higher MD in the hippocampal part of the cingulum (t457 = 4.01, 
p < 0.001, d = 0.37 [0.19, 0.56]) (see ST3). 

The nicotine dependent group had lower FA in the anterior limb of 
the internal capsule (t794 = − 3.17, q = 0.032, d = − 0.23 [− 0.37, 
− 0.09]) (see Fig. 3) in comparison to non-dependent controls. Post-hoc 
contrasts revealed that individuals with nicotine dependence had higher 
RD (t517 = 3.57, p < 0.001, d = 0.31 [0.14, 0.49]) and higher MD (t517 =

2.18, p = 0.029, d = 0.19 [0.02, 0.36]) in this tract (see ST4). 
Supplementary contrasts showed that the cocaine group had lower 

FA in the posterior thalamic radiation (t407 = − 2.08, p = 0.038, d =
− 0.21 [− 0.40, − 0.01]) and the sagittal stratum (t407 = − 2.02, 
p = 0.044, d = − 0.20 [− 0.40, − 0.01]) relative to the nicotine group. 
Likewise, the methamphetamine group demonstrated lower FA in the 
cingulum (t407 = − 2.12, p = 0.035, d = − 0.21 [− 0.41, − 0.02]), its 
hippocampal part (t407 = − 3.13, p = 0.002, d = − 0.31 [− 0.51, − 0.12]), 
and the splenium of the corpus callosum (t407 = − 2.56, p = 0.011, d =
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− 0.25 [− 0.45, − 0.06]) compared to the nicotine group. 
Results from the laterality analyses can be found in the Supple

mentary materials (see ST5-ST7). Differences in the cocaine group 
remained unchanged except for the posterior thalamic radiation whose 
effects were present in the left portion of the tract only. Results in the 
methamphetamine group were similar to the main analysis although 
three additional tracts, the left posterior limb (t794 = − 3.11, q = 0.036, 
d = − 0.18 [− 0.32, − 0.–04]) and the right anterior limb of the internal 
capsule (t794 = − 2.40, q = 0.046, d = − 0.17 [− 0.31, − 0.–03]), and the 
left posterior thalamic radiation (t794 = − 3.11, q = 0.010, d = − 0.22 
[− 0.36, − 0.–08]), showed lower FA relative to controls. Nicotine’s 
group original results (i.e., anterior limb of the internal capsule) did not 
survive FDR correction (q = 0.06, both left and right portions). 

The best performing machine learning algorithm was the SVM, with 
significant classifications for cocaine dependence (AUC = 0.70, 
p < 0.001), methamphetamine dependence (AUC = 0.71, p < 0.001), 
and nicotine dependence (AUC = 0.62, p = 0.014). SVM performance 
and the importance of each feature are available in Figs. 4 and 5, 
respectively. The performance of the remaining algorithms and the 
importance of each feature from the SVM classifications can be found in 
the Supplementary materials (SM8 and SM9). 

4. Discussion 

The study of white matter differences in relation to dependence on 
nicotine and illicit stimulants has received less attention than grey 
matter differences. While findings on nicotine dependence are often 
contradictory, cocaine and methamphetamine dependence work tend to 
be seriously confounded by comorbid dependence on other drugs and 
underpowered. Here, we found drug-specific white matter differences in 
a relatively large sample of individuals dependent on cocaine, meth
amphetamine, or nicotine. Dependent groups showed lower regional FA 
compared to non-dependent controls. The greatest differences were 

observed in methamphetamine dependence. Lower regional FA was 
found together with higher RD in all groups. Lower regional AD was 
related to methamphetamine dependence. Finally, we demonstrated 
that the SVM classifier successfully identified individuals dependent on 
cocaine and methamphetamine and to a lesser extent nicotine. 

The cocaine group had lower FA in projection tracts such as the 
posterior thalamic radiation, the retrolenticular part of the internal 
capsule, and the sagittal stratum. While there is limited prior evidence 
implicating the posterior thalamic radiation in cocaine dependence (Yip 
et al., 2017), the thalamus has been proposed to play a role in substance 
use and dependence (Huang et al., 2018). FA differences in the internal 
capsule have been reported previously in cocaine addiction (He et al., 
2020; van Son et al., 2016; Yip et al., 2017) and correlated to long-term 
abstinence, compulsive-like behaviors, and distress (Kopell and Green
berg, 2008). Lower FA along the sagittal stratum have been related to 
cocaine dependence (Ma et al., 2017; Yip et al., 2017). 

The methamphetamine dependent group showed lower FA in the 
cingulum and its hippocampal part, the genu and splenium of the corpus 
callosum, the superior fronto-occipital fasciculus, and the superior lon
gitudinal fasciculus. Similar to the observed cocaine effects, the meth
amphetamine group had lower FA in the posterior thalamic radiation 
and the sagittal stratum. While effects in the genu of the corpus callosum 
have been widely replicated (Huang et al., 2020; Kim et al., 2009; 
Lederer et al., 2016; Salo et al., 2009; Tobias et al., 2010), differences in 
the splenium have not. A recent TBSS work also found lower FA in the 
cingulum, superior longitudinal fasciculus, superior fronto-occipital 
fasciculus, sagittal stratum, and posterior thalamic radiation in partici
pants with methamphetamine dependence (Huang et al., 2020). Most of 
these tracts have been implicated in cognitive control and emotion 
regulation (Bubb et al., 2018; Fitsiori et al., 2011; Kamali et al., 2014). 
Lower FA within these tracts has been associated with both impulsivity 
and aggression in methamphetamine dependent individuals (Huang 
et al., 2020; Lederer et al., 2016). Notably, this group showed the most 

Fig. 1. Panel A: Effect sizes and confidence 
intervals from group comparison. Highlighted 
bars indicate a significant effect (q < 0.05) of 
the cocaine dependent group as compared to 
the control group. Bars falling to the left indi
cate lower FA in the cocaine dependent group. 
Panel B: Location of the effects. Panel C: Post- 
hoc analyses on the rest of the DTI metrics (i. 
e., AD, RD, and MD along the X-axis) for those 
tracts showing a significant FA difference (ns, 
non-significant; *, p < 0.05; **, p < 0.01; ***, 
p < 0.001). The Y-axis reflects site-adjusted AD, 
RD, and MD values after being residualizing for 
sex, age and age2. ACR: Anterior corona radi
ata, ALIC: Anterior limb of the internal capsule, 
BCC: Body of corpus callosum, CGC: Cingulum, 
CGH: Cingulum hippocampal part, CST: Corti
cospinal tract, EC: External capsule, FX: Fornix, 
FXST: Fornix stria terminalis, GCC: Genu of 
corpus callosum, PCR: Posterior corona radiata, 
PLIC: Posterior limb of the internal capsule, 
PTR: Posterior thalamic radiation, RLIC: Ret
rolenticular part of the internal capsule, SCC: 
Splenium of corpus callosum, SCR: Superior 
corona radiata, SFO: Superior fronto-occipital 
fasciculus, SLF: Superior longitudinal fascic
ulus, SS: Sagittal stratum, UNC: Uncinate 
fasciculus.   
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substantial FA differences. Beyond statistical significance, all differences 
moved in the same direction suggesting a global pattern of lower FA. 
Methamphetamine remains longer in the brain than cocaine and blocks 
dopaminergic reuptake while increasing its release. Thus, it is more 
neurotoxic and entails a greater risk for serious psychiatric and cognitive 
sequelae (Yang et al., 2018a, 2018b). Moreover, individuals with 
methamphetamine dependence are more likely to have abused multiple 
drugs in their life which can have a severe impact on the brain (Kaag 
et al., 2017; van Son et al., 2016). 

The cocaine and methamphetamine groups had higher RD in tracts 
showing lower FA, which is in line with prior reports (Huang et al., 
2020; Kaag et al., 2017; Lane et al., 2010; Lederer et al., 2016; Salo et al., 
2009). Higher RD suggests that lower FA may be linked to demyelin
ation. There are several pathological processes concerning the abuse of 
such stimulants that are deleterious to myelin (Gonçalves et al., 2014; 
Pereira et al., 2015; Yang et al., 2018a, 2018b). Both substances reduce 
glial cell efficiency in regulating glutamate homeostasis (Bachtell et al., 
2017; Matute et al., 2007), boost reactive oxygen species presence 
triggering oxidative stress responses (Lassmann and van Horssen, 2016), 
and down-regulate myelin expression (Smith et al., 2014). 
Stimulant-type drugs also cause vasoconstriction and increase the risk of 
hypoperfusion (Buttner, 2012; Polesskaya et al., 2011), expose the brain 
to toxins due to blood-brain barrier dysfunctions (Sajja et al., 2016), and 
prompt neuroinflammation by priming glial cells into relentlessly 
releasing pro-inflammatory cytokines (Bachtell et al., 2017). The 
methamphetamine group had lower AD within the cingulum, the genu 

of the corpus callosum, and the superior longitudinal fasciculus, which 
points instead to axonal damage. Our results contradict prior work 
reporting higher AD (Huang et al., 2020; Uhlmann et al., 2016) or null 
effects (Beard et al., 2019; Breen et al., 2017). Combined with lower FA, 
bidirectional AD changes might still suggest axonal damage. Concretely, 
higher AD may hint at neurofilament damage. This would provoke axons 
to be less tightly packed and lead to a widening of the interstitial space 
resulting in increases in the amount of water to diffuse (i.e., higher MD, 
lower FA) (Moore et al., 2018; Winklewski et al., 2018). This pattern of 
lower FA together with higher AD and MD was seen in Huang et al. 
(2020) and Uhlmann et al. (2016). Here, we exposed lower AD indi
cating axonal damage or fragmentation. Aggregation of cellular debris, 
disordered microtubules, and damaged neurofilaments following axonal 
injury barricade longitudinal water diffusion overall resulting in lower 
FA (Aung et al., 2013). 

The nicotine group had lower FA in the anterior limb of the internal 
capsule, a projection tract that connects thalamic, basal ganglia, and 
prefrontal areas. Prior evidence is conflicting as various studies have 
reported higher (Jacobsen et al., 2007; Van Ewijk et al., 2015; Yu et al., 
2016) and lower FA (Savjani et al., 2014; Wang et al., 2017; Yuan et al., 
2018; Zhang et al., 2010) in this tract. The potential benefits of nicotine 
exposure during adolescence remain a matter of debate. Nicotine ap
pears to promote glial maturation, boost nerve growth factor release, 
and prevent arachnoid acid-induced injury and apoptosis (Hudkins 
et al., 2012; Jacobsen et al., 2007; Liao et al., 2011; Van Ewijk et al., 
2015; Yu et al., 2016). Other researchers have suggested the effects of 

Fig. 2. Panel A: Effect sizes and confidence 
intervals from group comparison. Highlighted 
bars indicate a significant effect (q < 0.05) of 
the methamphetamine dependent group as 
compared to the control group. Bars falling to 
the left suggest lower FA (negative deviation). 
Panel B: Location of the effects. Panel C: Post- 
hoc analyses on the rest of DTI metrics (i.e., 
AD, RD, and MD along the X-axis) only for those 
tracts previously showing a significant FA dif
ference (ns, non-significant; *, p < 0.05; **, 
p < 0.01; ***, p < 0.001). The Y-axis reflects 
site-adjusted AD, RD, and MD values after being 
residualizing for sex, age and age2. Tract ab
breviations are the same as in Fig. 1.   

J. Ottino-González et al.                                                                                                                                                                                                                       



Drug and Alcohol Dependence 230 (2022) 109185

6

nicotine exposure not only fade but reverse as lifetime use escalates and 
addiction develops (Gogliettino et al., 2016; Paul et al., 2008; 
Umene-Nakano et al., 2014; Yu et al., 2016). Similarly, lower FA was 
found together with greater RD (Savjani et al., 2014; Yuan et al., 2018). 
Studies in mice found that nicotine exposure was related to lower myelin 
expression (Cao et al., 2013) and other potential myelin insults such as 
vasoconstriction, oxidative stress, or inflammation (Liao et al., 2011; 
Sajja et al., 2016). 

The best performing machine learning algorithm in the present 
dataset was the SVM that successfully detected individuals with cocaine 
and methamphetamine dependence relative to non-dependent controls. 
Although significant, neither the SVM nor the rest of the algorithms were 
as successful in classifying nicotine dependence (AUC = 0.62). Of note, 
the SVM algorithm favored features that were omitted in the mass- 
univariate tests suggesting that multivariate methods may be more 

useful in the development of neuroimaging markers of stimulant 
dependence than those exploring brain regions in isolation. Our results 
add to a growing body of work that leverages machine learning methods 
to identify patterns associated with stimulant dependence using MRI 
data (Li et al., 2019; Mackey et al., 2019; Mete et al., 2016; Wetherill 
et al., 2019). This is the first application of machine learning using DTI 
data in relation to stimulant dependence. 

Comparisons of the nicotine group with the cocaine and metham
phetamine groups revealed that the nicotine group showed higher FA. 
Differences in FA were localized on tracts where the control group also 
showed higher FA relative to the cocaine and methamphetamine groups. 
Nevertheless, the differences between the nicotine and the other stim
ulant groups were less widespread than those observed in comparison to 
the control group. Thus, it is possible that being dependent on both 
nicotine and cocaine or methamphetamine is associated with additional 

Fig. 3. Panel A: Effect sizes and confidence 
intervals from group comparison. Highlighted 
bars indicate a significant effect (q < 0.05) of 
the nicotine dependent group as compared to 
the control group. Bars falling to the left suggest 
lower FA (negative deviation). Panel B: Loca
tion of the effects. Panel C: Post-hoc analyses on 
the rest of DTI metrics (i.e., AD, RD, and MD 
along the X-axis) only for those tracts previ
ously showing a significant FA difference (ns, 
non-significant; *, p < 0.05; **, p < 0.01; ***, 
p < 0.001). The Y-axis reflects site-adjusted AD, 
RD, and MD values after being residualizing for 
sex, age and age2. Tract abbreviations are the 
same as in Fig. 1.   

Fig. 4. Area under the curve (AUC) of each of the 5-fold CV estimations on the SVM classifier for every group.  
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deleterious effects. In a recent report, FA negatively correlated with the 
number of additional drugs used by cocaine dependent individuals. In 
that study, however, most participants were co-dependent on nicotine 
making it difficult to divorce the results from this particular effect (Kaag 
et al., 2017). 

In the present work, we have demonstrated that dependence on 
stimulants is related to lower regional FA, and that such differences are 
more prominent in the cocaine and methamphetamine dependent 
groups. We based our analyses on tracts extracted according to the 
ICBM-DTI-81 atlas (Mori et al., 2008) to facilitate comparisons of results 
to other ENIGMA disease working groups (Favre et al., 2019; Hatton 
et al., 2020; Villalón-Reina et al., 2020). Most ROI-based studies on 
substance dependence have adopted manual segmentation approaches 
on a priori selected tracts, such as the corpus callosum in metham
phetamine dependence research, that limit sample size and delays 
replication. We offer new evidence on white matter differences related 
to methamphetamine dependence beyond the corpus callosum. Also, we 
assessed other DTI-derived metrics to clarify the underlying sources of 
lower FA, which is often overlooked or explored in ways precluding 
interpretation (i.e., when lacking FA differences). Additionally, we 
confirmed the potential of multivariate-based machine learning 
methods using DTI-derived data to classify dependence on stimulants. 
The current work also has several limitations. Besides demyelination 
and axonal injury, differences in FA may also emerge from 
non-pathological sources such as fiber alignment differences or the 
presence of crossing fibers (Jones et al., 2013). Therefore, we cannot 
confirm that differences in FA were solely related to demyelination or 
axonal damage. With cross-sectional data, it is also possible that the 
observed effects existed before any drug exposure. To control the 
number of tests, we used bilaterally averaged tracts that may have 
masked lateralized effects. However, we showed that the pattern of ef
fects remained similar using lateralized tracts. The cocaine group was 
significantly older and thus age was controlled in all the analyses. We 
additionally tested whether results changed with an age-matched sub
sample of controls (n = 147, 38.64 ± 8.48 age) and effects remained 
unaltered. Another limitation was the number of males within the 
cocaine group (n = 125, 85%). Although sex was controlled in all the 
analyses, we did not have sufficient statistical power to explore 

sex-specific effects. The comorbid dependence on nicotine in the cocaine 
(74%) and methamphetamine (87%) groups made it difficult to isolate 
the effects of being dependent on illicit stimulants from those of being 
dependent on nicotine too. However, similar effects were observed when 
comparing a subset of individuals with co-dependence on illicit stimu
lants and nicotine with the nicotine dependent only group and the 
non-dependent control group. Finally, and despite excluding individuals 
with dependence on other substances, information about recreational or 
sub-clinical use of other drugs was unavailable at most sites. 

In summary, in a relatively large and well-defined multi-site sample, 
we found lower regional FA in the cocaine and methamphetamine 
groups in various white matter tracts. Lower FA was also observed in the 
nicotine group but limited to the anterior limb of the internal capsule. 
Lower regional FA was found together with higher regional RD, sug
gesting demyelination in all groups. The methamphetamine group also 
exhibited lower regional AD consistent with axonal damage. Significant 
brain-based classifications identified through the SVM algorithm indi
cate that there is sufficient signal within DTI-derived patterns of effects 
to identify individuals with dependence on stimulants. The best classi
fications were achieved for cocaine and methamphetamine dependent 
individuals relative to non-dependent controls. 
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J. Ottino-González et al.                                                                                                                                                                                                                       



Drug and Alcohol Dependence 230 (2022) 109185

8

Author disclosures 

Dr Garavan was funded (1R01DA047119-01) by the National In
stitutes on Drug Abuse (NIDA). Dr Goldstein received financial support 
from NIDA (R21DA034954, 1R01DA041528, 1R01DA047851, and 
1R01DA048301). Dr Li was supported with funds from NIDA 
(R01AA021449, R01DA023248, and K25DA040032). NIDA 
(R01DA020726), the Thomas P. and Katherine K. Pike Chair in Addic
tion Studies, the Endowment from the Marjorie Greene Family Trust, 
and UCLA contract 20063287 with Philip Morris USA funded Dr London. 
Dr Momenan and the Clinical NeuroImaging Research Core was sup
ported (ZIA-AA000123) by the National Institutes on Alcohol Abuse and 
Alcoholism (NIAAA), Division of Intramural Clinical and Biological 
Research. Dr Luijten and Dr Veltman received funds from VIDI grant 
016.08.322 from Netherlands Organization for Scientific Research 
(NWO), awarded to Ingmar H.A. Franken. Dr Verdejo-García was sup
ported by the Career Development Fellowship from the Australian 
Medical Research Future fund (MRF1141214). Dr Zhao was funded by 
the National Key Research and Development Program of China 
(2017YFC1310400), the National Nature Science Foundation of China 
(81771436), and the Shanghai Municipal Health and Family Planning 
Commission (2018YQ045). Authors have no more financial aspects to 
disclose. 

Conflict of interests 

None of the authors have conflict of interests to declare. 

Appendix A. Supporting information 

Supplementary data associated with this article can be found in the 
online version at doi:10.1016/j.drugalcdep.2021.109185. 

References 

Alexander, A.L., Lee, J.E., Lazar, M., Field, A.S., 2007. Diffusion tensor imaging of the 
brain. Neurotherapeutics 4, 316–329. https://doi.org/10.1016/j.nurt.2007.05.011. 

Amari, S., Wu, S., 1999. Improving support vector machine classifiers by modifying 
kernel functions. Neural Netw. 12 https://doi.org/10.1016/S0893-6080(99)00032- 
5. 

Aung, W.Y., Mar, S., Benzinger, T.L., 2013. Diffusion tensor MRI as a biomarker in axonal 
and myelin damage. Imaging Med. 5, 427–440. https://doi.org/10.2217/iim.13.49. 

Bachtell, R.K., Jones, J.D., Heinzerling, K.G., Beardsley, P.M., Comer, S.D., 2017. Glial 
and neuroinflammatory targets for treating substance use disorders. Drug Alcohol 
Depend. 180, 156–170. https://doi.org/10.1016/j.drugalcdep.2017.08.003. 

Barenholtz, E., Fitzgerald, N.D., Hahn, W.E., 2020. Machine-learning approaches to 
substance-abuse research: emerging trends and their implications. Curr. Opin. 
Psychiatry 33, 334–342. https://doi.org/10.1097/YCO.0000000000000611. 

Basser, P.J., Mattiello, J., Lebihan, D., 1994. MR diffusion tensor spectroscopy and 
imaging. Biophys. J. 66, 259–267. 

Beard, C.L., Schmitz, J.M., Soder, H.E., Suchting, R., Yoon, J.H., Hasan, K.M., 
Narayana, P.A., Moeller, F.G., Lane, S.D., 2019. Regional differences in white matter 
integrity in stimulant use disorders: a meta-analysis of diffusion tensor imaging 
studies. Drug Alcohol Depend. 201, 29–37. https://doi.org/10.1016/j. 
drugalcdep.2019.03.023. 

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and 
powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300. 

Ben-Shachar, M., Makowski, D., Lüdecke, D., 2020. Compute and interpret indices of 
effect size. CRAN. R Package. 

Breen, M.S., Uhlmann, A., Ozcan, S., Chan, M., Pinto, D., Bahn, S., Stein, D.J., 2017. 
Parallel changes in serum proteins and diffusion tensor imaging in 
methamphetamine-associated psychosis. Sci. Rep. 7, 43777. https://doi.org/ 
10.1038/srep43777. 

Bubb, E.J., Metzler-Baddeley, C., Aggleton, J.P., 2018. The cingulum bundle: anatomy, 
function, and dysfunction. Neurosci. Biobehav. Rev. 92, 104–127. https://doi.org/ 
10.1016/j.neubiorev.2018.05.008. 

Buttner, A., 2012. Neuropathological alterations in cocaine abuse. Curr. Med. Chem. 19, 
5597–5600. https://doi.org/10.2174/092986712803988947. 

Cao, J., Wang, J., Dwyer, J.B., Gautier, N.M., Wang, S., Leslie, F.M., Li, M.D., 2013. 
Gestational nicotine exposure modifies myelin gene expression in the brains of 
adolescent rats with sex differences. e247–e247 Transl. Psychiatry 3. https://doi. 
org/10.1038/tp.2013.21. 

Center for Behavioral Health Statistics and Quality, 2018. Results from the 2017 National 
Survey on Drug Use and Health: Detailed tables. Prevalence Estimates, Etandard 
Errors, P Values, and Sample sizes 2871. 

Degenhardt, L., Charlson, F., Ferrari, A., Santomauro, D., Erskine, H., Mantilla- 
Herrara, A., Whiteford, H., Leung, J., Naghavi, M., Griswold, M., Rehm, J., Hall, W., 
Sartorius, B., Scott, J., Vollset, S.E., Knudsen, A.K., Haro, J.M., Patton, G., Kopec, J., 
Carvalho Malta, D., Topor-Madry, R., McGrath, J., Haagsma, J., Allebeck, P., 
Phillips, M., Salomon, J., Hay, S., Foreman, K., Lim, S., Mokdad, A., Smith, M., 
Gakidou, E., Murray, C., Vos, T., 2018. The global burden of disease attributable to 
alcohol and drug use in 195 countries and territories, 1990–2016: a systematic 
analysis for the Global Burden of Disease Study 2016. Lancet Psychiatry 5, 
987–1012. https://doi.org/10.1016/S2215-0366(18)30337-7. 

Dinga, R., Schmaal, L., Penninx, B.W.J.H., Veltman, D.J., Marquand, A.F., 2020. 
Controlling for effects of confounding variables on machine learning predictions. 
bioRxiv. 〈https://doi.org/10.1101/2020.08.17.255034〉. 

Favre, P., Pauling, M., Stout, J., Hozer, F., Sarrazin, S., Abé, C., Alda, M., Alloza, C., 
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Jones, D.K., Knösche, T.R., Turner, R., 2013. White matter integrity, fiber count, and 
other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73, 239–254. 
https://doi.org/10.1016/j.neuroimage.2012.06.081. 

Kaag, A.M., van Wingen, G.A., Caan, M.W.A., Homberg, J.R., van den Brink, W., 
Reneman, L., 2017. White matter alterations in cocaine users are negatively related 
to the number of additionally (ab)used substances. Addict. Biol. 22, 1048–1056. 
https://doi.org/10.1111/adb.12375. 

Kaag, A.M., Schulte, M.H.J., Jansen, J.M., van Wingen, G., Homberg, J., van den 
Brink, W., Wiers, R.W., Schmaal, L., Goudriaan, A.E., Reneman, L., 2018. The 
relation between gray matter volume and the use of alcohol, tobacco, cocaine and 
cannabis in male polysubstance users. Drug Alcohol Depend. 187, 186–194. https:// 
doi.org/10.1016/j.drugalcdep.2018.03.010. 

Kamali, A., Flanders, A.E., Brody, J., Hunter, J.V., Hasan, K.M., 2014. Tracing superior 
longitudinal fasciculus connectivity in the human brain using high resolution 
diffusion tensor tractography. Brain Struct. Funct. 219, 269–281. https://doi.org/ 
10.1007/s00429-012-0498-y. 

Kim, I.-S., Kim, Y.-T., Song, H.-J., Lee, J.-J., Kwon, D.-H., Lee, H.J., Kim, M.-N., Yoo, D.- 
S., Chang, Y., 2009. Reduced corpus callosum white matter microstructural integrity 
revealed by diffusion tensor eigenvalues in abstinent methamphetamine addicts. 
NeuroToxicology 30, 209–213. https://doi.org/10.1016/j.neuro.2008.12.002. 

Kochunov, P., Williamson, D.E., Lancaster, J., Fox, P., Cornell, J., Blangero, J., Glahn, D. 
C., 2012. Fractional anisotropy of water diffusion in cerebral white matter across the 
lifespan. Neurobiol. Aging 33, 9–20. https://doi.org/10.1016/j. 
neurobiolaging.2010.01.014. 

Kochunov, P., Du, X., Moran, L.V., Sampath, H., Wijtenburg, S.A., Yang, Y., Rowland, L. 
M., Stein, E.A., Hong, L.E., 2013. Acute nicotine administration effects on fractional 
anisotropy of cerebral white matter and associated attention performance. Front. 
Pharmacol. 4 https://doi.org/10.3389/fphar.2013.00117. 

Kopell, B.H., Greenberg, B.D., 2008. Anatomy and physiology of the basal ganglia: 
Implications for DBS in psychiatry. Neurosci. Biobehav. Rev. 32, 408–422. https:// 
doi.org/10.1016/j.neubiorev.2007.07.004. 

Kuhn, S., Schubert, F., Gallinat, J., 2010. Reduced thickness of medial orbitofrontal 
cortex in smokers. Biol. Psychiatry 68, 1061–1065. https://doi.org/10.1016/j. 
biopsych.2010.08.004. 

Lane, S.D., Steinberg, J.L., Ma, L., Hasan, K.M., Kramer, L.A., Zuniga, E.A., Narayana, P. 
A., Moeller, F.G., 2010. Diffusion tensor imaging and decision making in cocaine 
dependence. PLoS One 5. https://doi.org/10.1371/journal.pone.0011591. 

Lassmann, H., van Horssen, J., 2016. Oxidative stress and its impact on neurons and glia 
in multiple sclerosis lesions. Biochim. Biophys. Acta BBA Mol. Basis Dis. 1862, 
506–510. https://doi.org/10.1016/j.bbadis.2015.09.018. 

Lederer, K., Fouche, J.-P., Wilson, D., Stein, D.J., Uhlmann, A., 2016. Frontal white 
matter changes and aggression in methamphetamine dependence. Metab. Brain Dis. 
31, 53–62. https://doi.org/10.1007/s11011-015-9775-9. 

Li, Y., Cui, Z., Liao, Q., Dong, H., Zhang, J., Shen, W., Zhou, W., 2019. Support vector 
machine-based multivariate pattern classification of methamphetamine dependence 
using arterial spin labeling. Addict. Biol. 24, 1254–1262. https://doi.org/10.1111/ 
adb.12705. 

Liao, Y., Tang, J., Deng, Q., Deng, Y., Luo, T., Wang, X., Chen, H., Liu, T., Chen, X., 
Brody, A.L., Hao, W., 2011. Bilateral fronto-parietal integrity in young chronic 
cigarette smokers: a diffusion tensor imaging study. PLoS ONE 6. https://doi.org/ 
10.1371/journal.pone.0026460. 

Ma, L., Steinberg, J.L., Wang, Q., Schmitz, J.M., Boone, E.L., Narayana, P.A., Moeller, F. 
G., 2017. A preliminary longitudinal study of white matter alteration in cocaine use 
disorder subjects. Drug Alcohol Depend. 173, 39–46. https://doi.org/10.1016/j. 
drugalcdep.2016.12.016. 

Mackey, S., Paulus, M., 2013. Are there volumetric brain differences associated with the 
use of cocaine and amphetamine-type stimulants? Neurosci. Biobehav. Rev. 37, 
300–316. https://doi.org/10.1016/j.neubiorev.2012.12.003. 

Mackey, S., Allgaier, N., Chaarani, B., Spechler, P., Orr, C., Bunn, J., Allen, N.B., Alia- 
Klein, N., Batalla, A., Blaine, S., Brooks, S., Caparelli, E., Chye, Y.Y., Cousijn, J., 
Dagher, A., Desrivieres, S., Feldstein-Ewing, S., Foxe, J.J., Goldstein, R.Z., 
Goudriaan, A.E., Heitzeg, M.M., Hester, R., Hutchison, K., Korucuoglu, O., Li, C.S.R., 
London, E., Lorenzetti, V., Luijten, M., Martin-Santos, R., May, A., Momenan, R., 
Morales, A., Paulus, M.P., Pearlson, G., Rousseau, M.E., Salmeron, B.J., Schluter, R., 
Schmaal, L., Schumann, G., Sjoerds, Z., Stein, D.J., Stein, E.A., Sinha, R., Solowij, N., 
Tapert, S., Uhlmann, A., Veltman, D., Van Holst, R., Whittle, S., Wright, M.J., 
Yücel, M., Zhang, S., Yurgelun-Todd, D., Hibar, D.P., Jahanshad, N., Evans, A., 
Thompson, P.M., Glahn, D.C., Conrod, P., Garavan, H., 2019. Mega-analysis of gray 
matter volume in substance dependence: General and substance-specific regional 

effects. Am. J. Psychiatry 176, 119–128. https://doi.org/10.1176/appi. 
ajp.2018.17040415. 

Mak, K.K., Lee, K., Park, C., 2019. Applications of machine learning in addiction studies: 
A systematic review. Psychiatry Res. 275, 53–60. https://doi.org/10.1016/j. 
psychres.2019.03.001. 

Matute, C., Alberdi, E., Domercq, M., Sánchez-Gómez, M.-V., Pérez-Samartín, A., 
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Papassotiropoulos, A., de Quervain, D.J.-F., Rietschel, M., Schumann, G., Tost, H., 
Witt, S.H., Zink, M., Meyer-Lindenberg, A., 2019. Reproducible grey matter patterns 
index a multivariate, global alteration of brain structure in schizophrenia and 
bipolar disorder. Transl. Psychiatry 9. https://doi.org/10.1038/s41398-018-0225-4. 

Smith, H.R., Beveridge, T.J.R., Nader, M.A., Porrino, L.J., 2014. Regionally-specific 
alterations in myelin proteins in nonhuman primate white matter following 
prolonged cocaine self-administration. Drug Alcohol Depend. 137, 143–147. https:// 
doi.org/10.1016/j.drugalcdep.2014.01.015. 

Suchting, R., Beard, C.L., Schmitz, J.M., Soder, H.E., Yoon, J.H., Hasan, K.M., 
Narayana, P.A., Lane, S.D., 2020. A meta-analysis of tract-based spatial statistics 
studies examining white matter integrity in cocaine use disorder. Addict. Biol., 
e12902 https://doi.org/10.1111/adb.12902. 

Tobias, M.C., O’Neill, J., Hudkins, M., Bartzokis, G., Dean, A.C., London, E.D., 2010. 
White-matter abnormalities in brain during early abstinence from 
methamphetamine abuse. Psychopharmacology 209, 13–24. https://doi.org/ 
10.1007/s00213-009-1761-7. 

Uhlmann, A., Fouche, J.P., Lederer, K., Meintjes, E.M., Wilson, D., Stein, D.J., 2016. 
White matter microstructure and impulsivity in methamphetamine dependence with 
and without a history of psychosis. Hum. Brain Mapp. 37, 2055–2067. https://doi. 
org/10.1002/hbm.23159. 

Umene-Nakano, W., Yoshimura, R., Kakeda, S., Watanabe, K., Hayashi, K., Nishimura, J., 
Takahashi, H., Moriya, J., Ide, S., Ueda, I., Hori, H., Ikenouchi-Sugita, A., Katsuki, A., 
Atake, K., Abe, O., Korogi, Y., Nakamura, J., 2014. Abnormal white matter integrity 
in the corpus callosum among smokers: tract-based spatial statistics. PLoS One 9, 
1–6. https://doi.org/10.1371/journal.pone.0087890. 
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